If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-7y-1=0
a = 8; b = -7; c = -1;
Δ = b2-4ac
Δ = -72-4·8·(-1)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-9}{2*8}=\frac{-2}{16} =-1/8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+9}{2*8}=\frac{16}{16} =1 $
| 5-0.5x=2x-5 | | 2(400-x)+2x=800 | | 12-h=18 | | 7x+2+10x+3=180 | | 12-2n=14 | | -4x+85=65 | | 9x+5x/2=115 | | x+2/4+x-3/3=1 | | 9-3x=4+2x | | 10x+21(x-4)=71 | | 4x+2=-5x+4 | | -8-2x=44 | | 11x+9=22x-12 | | 6(2-3a)=32 | | 5x-4+9x+16=180 | | Y=(0.2x)+20 | | -173=-2x-5(-5x-16) | | (8^2x-1)=35^x | | J=20-14j | | Y=0.2x+20 | | 3=x(0.035x-0.2) | | 11q+4=81 | | D=425+2d+8+d | | -8x-6=10x-22 | | (4x-5)+(2x+1)=180 | | 4x-5+2x+1=180 | | 7p^2=34=53p+6 | | 3x-5+8=4x-7=180 | | 11x-3=4x+117 | | 6x-12=6x+9 | | 180-(3x-5)=180-(x+15) | | -2x-8=-x-5 |